Fractional differentiation of functions with lacunary Fourier series
نویسندگان
چکیده
منابع مشابه
Lacunary Fourier Series for Compact Quantum Groups
This paper is devoted to the study of Sidon sets, Λ(p)-sets and some related notions for compact quantum groups. We establish several different characterizations of Sidon sets, and in particular prove that any Sidon set in a discrete group is a strong Sidon set in the sense of Picardello. We give several relations between Sidon sets, Λ(p)-sets and lacunarities for LFourier multipliers, generali...
متن کاملSelf Fourier functions and fractional Fourier transforms
It was shown [ 21 that any SFF can be decomposed in this manner. Thus, F(x) is an SFF if, and only if, it can be expressed as the sum of four functions in the form of the above equation. Additional SFF studies are reported in refs. [ 3-51. Another issue that has been recently investigated is the fractional Fourier transform [ 6-91. Two distinct definitions of the fractional Fourier transform ha...
متن کاملLacunary Fractional Brownian Motion
In this paper, a new class of Gaussian field is introduced called Lacunary Fractional Brownian Motion. Surprisingly we show that usually their tangent fields are not unique at every point. We also investigate the smoothness of the sample paths of Lacunary Fractional Brownian Motion using wavelet analysis.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1968
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-1968-0226284-2